

1	
2	CONGRESS OF NEUROLOGICAL SURGEONS SYSTEMATIC REVIEW AND
3	EVIDENCE-BASED GUIDELINE ON THE ROLE OF STEROIDS IN THE TREATMENT
4	OF ADULTS WITH METASTATIC BRAIN TUMORS
5	Sponsored by
6	The Congress of Neurological Surgeons and the Section on Tumors
7	Affirmation of Educational Benefit by
8	The Congress of Neurological Surgeons and the American Association of Neurological Surgeons
9	Timothy C. Ryken, MD, MS, ¹ John S. Kuo, MD, PhD, ² Roshan S. Prabhu, MD, MS, ³ Jonathan H.
10	Sherman, MD, ⁴ Steven N. Kalkanis, MD, ⁵ Jeffrey J. Olson, MD ⁶
11	1. Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
12	2. Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School,
13	University of Texas at Austin, Austin, Texas
14	3. Southeast Radiation Oncology Group, Levine Cancer Institute, Carolinas Healthcare System,
15	Charlotte, North Carolina
16	4. Department of Neurosurgery, The George Washington University, Washington, DC
17	5. Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
18	6. Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
19	Correspondence:
20	Timothy C. Ryken, MD, MS
21	Section of Neurosurgery
22	Dartmouth-Hitchcock Medical Center
23	One Medical Center Drive
24	Lebanon, NH 03756
25	Email: <u>rykent@me.com</u>
26	Keywords: Brain metastases, cerebral metastases, corticosteroids, neurologic symptoms, practice

27 guideline, steroid dosage, systematic review

28 No part of this manuscript has been published or submitted for publication elsewhere.

29 ABSTRACT

Questions

Do steroids improve neurologic symptoms and/or quality of life in patients with metastatic brain tumors compared to supportive care only or other treatment options?

If steroids are given, what dose should be used?

Target population

These recommendations apply to adults diagnosed with brain metastases.

Recommendations

Steroid therapy versus no steroid therapy

Asymptomatic brain metastases patients without mass effect Insufficient evidence exists to make a treatment recommendation for this clinical scenario.

Brain metastases patients with mild symptoms related to mass effect

Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. It is recommended for patients who are symptomatic from metastatic disease to the brain that a starting dose of 4–8 mg/day of dexamethasone be considered.

Brain metastases patients with moderate to severe symptoms related to mass effect

Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. If patients exhibit severe symptoms consistent with increased intracranial pressure, it is recommended that higher doses such as 16 mg/day or more be considered.

Choice of Steroid

Level 3: If corticosteroids are given, dexamethasone is the best drug choice given the available evidence.

Duration of Corticosteroid Administration

Level 3: Corticosteroids, if given, should be tapered as rapidly as possible but no faster than clinically tolerated, based upon an individualized treatment regimen and a full understanding of the long-term sequelae of corticosteroid therapy.

Given the very limited number of studies (two) which met the eligibility criteria for the systematic review, these are the only recommendations that can be offered based on this methodology. Please see "Discussion" and "Summary" section for additional details.

30 INTRODUCTION

31 Rationale

32 Steroids have been used to assist in controlling peritumoral intracerebral edema in the care of patients with newly diagnosed metastatic brain disease.¹⁻¹² Dexamethasone has been the steroid most 33 34 commonly used due to its minimal mineralocorticoid effect. Steroids have been used for palliative 35 care, and, in combination with surgery and radiation, to reduce treatment-related toxicity. 36 Historically, the majority of patients treated with an initial dose of 4 to 8 mg/day responded within 24 to 72 hours.¹³ Toxicity and side effects from steroids occur frequently and contribute to the 37 38 overall morbidity and mortality in this often-tenuous patient population. However, as previously 39 described, a review of the literature continues to demonstrate a lack of well-controlled studies 40 addressing this topic and significant variability in the dosing and administration of steroids in both the symptomatic and asymptomatic patient.¹¹ 41 42 **Objectives** 43 This updated systematic review addresses the role of corticosteroids in the treatment of 44 metastatic brain disease with the following overall objectives: 45 1. To systematically review and update the evidence available addressing the use of 46 corticosteroids in the management of patients with brain metastases since the previous review of 2010,¹¹ again addressing the following questions: 47 48 • Do steroids improve neurologic symptoms in patients with metastatic brain tumors 49 compared to no treatment?

• If steroids are given, what dose should be used?

51 2. To make recommendations based on this evidence for the role of corticosteroids in the 52 management of these patients.

53 METHODS

54 Writing Group and Question Establishment

55 The writers represent a multi-disciplinary panel of clinical experts encompassing 56 neurosurgery and radiation oncology. Together, they were recruited to develop these evidence-based 57 practice guidelines for surgery for metastatic brain tumors. Questions were developed by group 58 consensus recognizing the questions used in the prior guidelines published on this topic and taking 59 into account current salient concerns over the use of steroids in metastatic brain tumor management.

60 Search Method

61 The PubMed online database was searched for the period of October 1, 2008 through

62 December 31, 2015, using the following queries in all fields: steroids and brain metastases, and

63 dexamethasone and brain metastases. The results from each search were downloaded into an

64 Endnote library. The libraries were merged and duplicate entries were eliminated. This inclusive

65 search strategy was designed to capture all manuscripts pertaining to brain metastases and steroids

66 for manual review and to determine if any more recent articles had been missed in the prior update.

67 The reference lists of the most relevant and most recent articles were also reviewed, and additional

- 68 articles selected for initial review.
- 69 Study Selection and Eligibility Criteria:
- 70 The following inclusion criteria were used for manual review of studies:
- 1) published in English with a publication date prior to December 31, 2015
- 72 2) included only patients with brain metastases
- 3) published in a peer-reviewed journal with comparative data pertaining to the use of
- 74 steroids in patients with brain metastases
- The search strategy was purposefully as broad as possible given the limited number ofrelevant articles found in the previous guideline.

77 Data Collection Process

- 78 The initial screening and evaluation of the initial search-returned citations using pre-
- 79 determined criteria for relevance (initial screen via title/abstract, with a secondary full-text review of
- 80 potentially relevant manuscripts) was performed by the primary author with additional input from
- 81 the author group. Data from studies meeting eligibility criteria was then extracted by a single
- 82 reviewer and checked by a minimum of two additional reviewers.
- 83 Assessment for Risk of Bias

84 Studies selected for full-text review were evaluated, in addition to the overall quality of the 85 study design, for specific issues of bias. Particular attention was paid to potential bias related to 86 selective case choice and reporting, publication bias, bias related to change in treatment methods 87 over time, hidden agenda bias when perceived, and variability due to inconsistencies in data entry 88 and oversight. When encountered concerns about specific examples of bias in the published data 89 were noted in the evidentiary tables. The class of data and subsequent level of recommendation was 80 then adjusted accordingly.

91 Description of the Data Classification System and Recommendation Formulation

92 The quality of each study regarding metastases-specific data and the strength of the

93 recommendations within this work were graded according to the American Association of

94 Neurological Surgeons (AANS)/Congress of Neurological Surgeons (CNS) criteria

95 (https://www.cns.org/guidelines/guideline-procedures-policies/guideline-development-

96 <u>methodology</u>).

97 **RESULTS**

98 Study Selection and Characteristics

In the 2010 guideline,¹¹ despite the widespread use of steroids in the management of brain 99 metastases, only 2 publications met the stated eligibility criteria.^{13, 14} Given the limited data yielded 100 101 by the literature search, additional searches were undertaken by reviewing the bibliographies of 102 relevant recent publications and additional review of any relevant published literature addressing the 103 treatment of metastatic brain disease for references to steroid administration. These articles are summarized in the discussion below. The publications that report the Quality of Life after Treatment 104 for Brain Metastases (QUARTZ) trial^{1, 8, 12, 15} were summarized in the publication by Mulvenna et 105 $al^{1, 12}$ in 2016. Mulvenna et al^{12} was published after the literature review for this guideline was 106 107 performed, but is referenced for completeness, even though it was not included as evidence to 108 support the recommendations of this guideline update.

109 Results of Individual Studies, Discussion of Study Limitations, and Risk of Bias

All of the following studies were graded as Class 3 evidence. Two studies were included in the original 2010 guideline.¹¹ Vecht et al¹³ conducted a randomized study of 4, 8, and 16 mg/day dosing of dexamethasone and demonstrated no advantage to higher dosing in patients without symptomatic intracranial hypertension. Two consecutive double-blind randomized trials in patients with brain metastases and Karnofsky performance scores (KPS) ≤ 80 were designed to evaluate the 115 minimum effective dose of oral dexamethasone. Initially, a dexamethasone dosage of 8 mg/day

116 (group 1) was compared to 16 mg/day (group 2), followed by a comparison of 4 mg/day (group 3)

117 versus 16 mg/day (group 4). The outcomes of interest were alteration in KPS and the frequency of

side effects at days 0, 7, 28, and 56.

119 Both groups showed improvement, but there was no significant difference in KPS 120 improvement comparing the 8-mg group versus the 16-mg group at day 7 (mean 8.0 ± 10.1 versus 121 7.3 ± 14.2).

In the second trial conducted by Vecht et al¹³, both groups showed improvement. There was no significant difference between the 4 mg and 16 mg groups, comparing 6.7 ± 11.3 points at day 7 and 7.1 ± 18.2 points at day 28 versus 9.1 ± 12.4 and 5.6 ± 18.5 points, respectively. Side effects were more frequent in the 16 mg/day versus the 4 mg/day group at day 28 (combined frequency 91% versus 46%, p<.03).

127 The authors concluded that the lower doses of 4 and 8 mg dexamethasone per day had an 128 equivalent effect on improving neurologic performance when compared with a dose of 16 mg/day at 1 and 4 weeks of treatment, in moderately symptomatic patients without signs of impending 130 herniation. The dosing recommendation from this study was 4 mg/day dosage with a dose taper for 131 28 days in patients with no symptoms of mass effect.

Wolfson et al¹⁴ randomized 12 patients undergoing whole brain radiation therapy following an initial dose of 24 mg dexamathasone into a group receiving 4 mg every 6 hours during the radiotherapy versus no additional steroids. Although more patients were improved in the steroid group (29% versus 0%), the small size and complete lack of statistical analysis resulted in this study being excluded as evidence in the previous report.

Given the extremely limited number of studies that satisfied the conditions of inclusion, an additional discussion of published literature on the subject of corticosteroids in metastatic brain disease is provided to offer a larger context for this topic. While the following studies were not part of the body of evidence considered in formulating treatment recommendations in this evidencebased guideline, they do highlight areas of interest where clinical trials are still required to answer important steroid-related questions.

A series of authors have published contemporary updates, reviews, and consensus documents
that recommend steroid therapy in the management of CNS metastatic disease, with no additional

data provided.^{3, 4, 7, 9, 10, 15-18} For example the systematic review by Tsao et al provides little data on
how the actual review was conducted.⁹

147 The series of articles published describing the QUARTZ study compare palliative whole 148 brain radiation therapy versus supportive care with steroids, and are significant in that they appear to 149 establish the role of steroids as a baseline of care for the symptomatic patient with central nervous 150 system metastasis.^{1, 8, 12, 15} This study provides randomized data on the comparison of whole brain 151 radiotherapy versus steroids alone but provides no comparative data on dosing or the comparison of 152 no steroid versus steroid. It appears that this issue has been assumed to be adequately addressed with 153 clinical practice, because no comparative studies addressing this issue have appeared in >20 years.

154 Although they do not provide comparative data, several additional studies are noted as they 155 include issues related to steroid use in this population. Not mentioned in the 2010 guideline,¹¹ Sturdza et al¹⁹ studied steroid prescribing practices and patient side effects in 88 patients identified 156 157 in the Palliative Radiation Oncology database. Forty-five percent of physicians used a 158 dexamethasone dose of 4 mg 4 times daily (16mg/day) with 60% using a 4-week taper. The most 159 common side effects were increased appetite or weight gain (46%), insomnia (24%), gastrointestinal 160 symptoms (20%), and proximal muscle weakness (28%). The authors concluded that considerable 161 variation in the prescribing practices existed even within a single institution, with many patients 162 receiving high doses of steroids for considerable periods of time and developing related side effects, 163 and they propose a prospective study to standardize dosing and taper practices to optimize 164 management and minimize toxicity.

Pulenzas et al⁶ surveyed a cohort of patients undergoing whole brain radiation therapy for 165 166 changes in fatigue scores using a broad panel of outcome measures, including the Edmonton 167 Symptom Assessment System, the Brain Symptom and Impact Questionnaire, the Spitzer 168 Questionnaire, the European Organization for Research and Treatment of Cancer (EORTC) Quality 169 of Life Questionnaire, the EORTC brain module, the EORTC Quality of Life Questionnaire Core 15 170 Palliative, and the Functional Assessment of Cancer Therapy-General. The authors concluded that 171 fatigue was significantly increased and quality of life significantly reduced over the first month in all 172 patients. Increased fatigue was significantly related with decreased overall QOL. Interestingly, for 173 all groups, there was no significant difference in fatigue scores or quality of life with or without the 174 addition of dexamethasone.

175

Alan et al⁵ studied the impact of preoperative steroids on 30-day morbidity and mortality of

176 >4000 patients undergoing craniotomy for resection of malignant brain tumors (metastatic brain

- tumors 37.5% (n = 1611) and primary malignant gliomas 62.5% (n = 2796). Approximately 23% of
- 178 patients received perioperative steroids (n = 1009). Logistic regression was used to assess the
- association between preoperative steroid use and perioperative complications before and after 1:1
- 180 propensity score matching. In the unmatched cohort (n = 1009), steroid use was associated with
- 181 decreased length of hospitalization (odds ratio 0.7; 95% confidence interval 0.6-0.8). In this same
- 182 group, the incidence of readmission (odds ratio 1.5; 95% confidence interval 1.2-1.8) was increased.
- 183 In the matched cohort (n = 465), steroid use was not statistically associated with any adverse
- 184 outcomes. As an independent risk factor, preoperative steroid use was not associated with any
- 185 observed perioperative complications.

186 The authors concluded that preoperative steroids do not independently compromise the short-187 term outcome of craniotomy for resection of malignant brain tumors. Separating out the metastatic 188 versus the primary tumor patients is difficult from the data presented and limits the ability to 189 formulate recommendations.

190 Synthesis of Results

Vecht et al¹³ continues to provide the most convincing data on the role for steroids in patients with brain metastases and for the choice of dosing. Based on their observations of improvement in all groups treated with steroids, Level 3 recommendations were made in the 2010 Guideline.¹¹ The results of this guideline confirms the validity of those recommendations, because no novel evidence has been published on this topic since 2010.

196 Given the very limited number of studies only two of which met the eligibility criteria for the

197 systematic review, these are the only recommendations that can be offered based on this

198 methodology. Please see the Discussion section for additional details.

199 DISCUSSION

Although comparative studies addressing various steroid dosing regimens are generally lacking, studies addressing additional topics of interest have been published in recent years.^{1, 2, 5, 6, 12} A better understanding of the toxicity related to routine steroid use continues to develop, and this research would support the principle of using the lowest effective steroid dose.^{6, 19} The design of large clinical trials in which a steroid treatment-only groups are considered the "best supportive care" group underlines the conviction most physicians hold for the critical role of steroids in

managing the patient with symptomatic central nervous system metastatic disease.^{1, 8, 15} 206

207 The issue of dosing regimen is problematic to address based on the evidence available. The study noted by Vecht et al¹³ used only 4 times daily dosing and does not address alternative dosing 208 regimens. Therefore, only recommendations on total amount per day have been formulated. It is 209 210

- recognized as common practice that alternative dosing, such as twice daily, is acceptable practice.
- 211 In addition, the ability of steroids to reduce the likelihood of treatment-related toxicity, either 212 following surgery or radiotherapy, continues to be of interest and warrants additional study at least
- as a component of the data collection process in clinical trials.^{3,5} 213

CONCLUSION AND KEY ISSUES FOR FUTURE INVESTIGATIONS 214

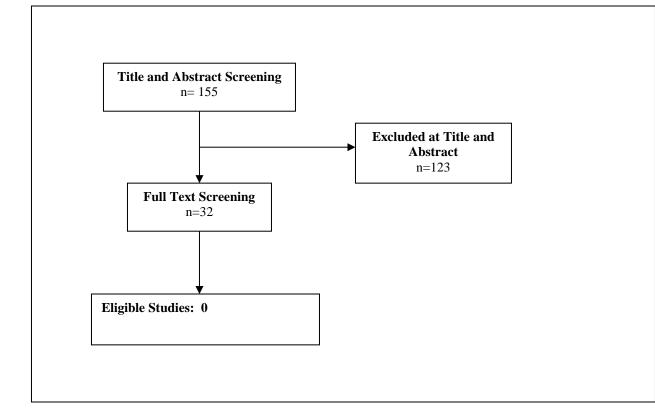
215 It is clear from this review of the literature that steroids are a mainstay of treatment for 216 patients with metastatic brain disease despite the relative lack of high-quality evidence supporting 217 any specific therapy. Based on the literature available for this guideline update, larger prospective or 218 carefully planned retrospective studies should be considered to clarify more specific patient-219 dependent dosing. Complications related to steroid use, including adrenal insufficiency with 220 tapering, should continue to be monitored, and perhaps alternative approaches to reducing 221 peritumoral edema could be explored to eliminate the unwanted but common side effects of steroid 222 therapy entirely.

223 **Potential Conflicts of Interest**

224 The Brain Metastases Guideline Update Task Force members were required to report all 225 possible conflicts of interest (COIs) prior to beginning work on the guideline, using the COI 226 disclosure form of the AANS/CNS Joint Guidelines Review Committee, including potential COIs 227 that are unrelated to the topic of the guideline. The CNS Guidelines Committee and Guideline Task 228 Force Chair reviewed the disclosures and either approved or disapproved the nomination. The CNS 229 Guidelines Committee and Guideline Task Force Chair are given latitude to approve nominations of 230 task force members with possible conflicts and address this by restricting the writing and reviewing 231 privileges of that person to topics unrelated to the possible COIs. The conflict of interest findings are 232 provided in detail in the companion introduction and methods manuscript.

233 **Disclosures**

234 These evidence-based clinical practice guidelines were funded exclusively by the Congress 235 of Neurological Surgeons and the Tumor Section of the Congress of Neurological Surgeons and the 236 American Association of Neurological Surgeons, which received no funding from outside


237 commercial sources to support the development of this document.

238 Disclaimer of Liability

239 This clinical systematic review and evidence-based guideline was developed by a 240 multidisciplinary physician volunteer task force and serves as an educational tool designed to 241 provide an accurate review of the subject matter covered. These guidelines are disseminated with the 242 understanding that the recommendations by the authors and consultants who have collaborated in 243 their development are not meant to replace the individualized care and treatment advice from a 244 patient's physician(s). If medical advice or assistance is required, the services of a competent 245 physician should be sought. The proposals contained in these guidelines may not be suitable for use 246 in all circumstances. The choice to implement any particular recommendation contained in these 247 guidelines must be made by a managing physician in light of the situation in each particular patient 248 and on the basis of existing resources.

249 Acknowledgments

250 The authors acknowledge the CNS Guidelines Committee for its contributions throughout 251 the development of the guideline and the AANS/CNS Joint Guidelines Review Committee for its 252 review, comments, and suggestions throughout peer review, as well as Trish Rehring, MPH, CHES, 253 CNS Guidelines Senior Manager, and Mary Bodach, MLIS, Senior Guidelines Specialist, for their 254 assistance. Throughout the review process, the reviewers and authors were blinded from one 255 another. At this time, the guidelines task force would like to acknowledge the following individual 256 peer reviewers for their contributions: Manish Aghi, MD, PhD, Manmeet Ahuwalia, MD, Sepideh 257 Amin-Hanjani, MD, Edward Avila, MD, Maya Babu, MD, MBA, Kimon Bekelis, MD, Priscilla 258 Brastianos, MD, Paul Brown, MD, Andrew Carlson, MD, MS, Justin Jordan, MD, Terrence Julien, 259 MD, Cathy Mazzola, MD, Adair Prall, MD, Shayna Rich, MD, PhD, Arjun Sahgal, MD, Erik 260 Sulman, MD, May Tsao, MD, Michael Voglebaum, MD, Stephanie Weiss, MD, and Mateo Ziu, 261 MD.

REFERENCES

- 1. Mulvenna P, Nankivell M, Barton R, et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. *Lancet*. Sep 2 2016.
- 2. Agar M, Koh ES, Gibbs E, et al. Validating self-report and proxy reports of the Dexamethasone Symptom Questionnaire -Chronic for the evaluation of longer-term corticosteroid toxicity. *Support Care Cancer*. Mar 2016;24(3):1209-1218.
- **3.** Tsao MN. Brain metastases: advances over the decades. *Ann Palliat Med.* Oct 2015;4(4):225-232.
- **4.** Pruitt AA. Medical management of patients with brain tumors. *Continuum (Minneap Minn)*. Apr 2015;21(2 Neuro-oncology):314-331.
- 5. Alan N, Seicean A, Seicean S, Neuhauser D, Benzel EC, Weil RJ. Preoperative steroid use and the incidence of perioperative complications in patients undergoing craniotomy for definitive resection of a malignant brain tumor. *J Clin Neurosci*. Sep 2015;22(9):1413-1419.
- **6.** Pulenzas N, Khan L, Tsao M, et al. Fatigue scores in patients with brain metastases receiving whole brain radiotherapy. *Support Care Cancer*. Jul 2014;22(7):1757-1763.
- 7. Expert Panel on Radiation Oncology-Brain M, Lo SS, Gore EM, et al. ACR Appropriateness Criteria(R) pre-irradiation evaluation and management of brain metastases. *J Palliat Med.* Aug 2014;17(8):880-886.
- 8. Langley RE, Stephens RJ, Nankivell M, et al. Interim data from the Medical Research Council QUARTZ Trial: does whole brain radiotherapy affect the survival and quality of life of patients with brain metastases from non-small cell lung cancer? *Clin Oncol (R Coll Radiol)*. Mar 2013;25(3):e23-30.
- **9.** Tsao MN, Khuntia D, Mehta MP. Brain metastases: what's new with an old problem? *Curr Opin Support Palliat Care*. Mar 2012;6(1):85-90.
- **10.** Pruitt AA. Medical management of patients with brain tumors. *Curr Treat Options Neurol.* Aug 2011;13(4):413-426.
- **11.** Ryken TC, McDermott M, Robinson PD, et al. The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. *J Neurooncol.* Jan 2010;96(1):103-114.
- **12.** Mulvenna P, Nankivell M, Barton R, et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. *Lancet*. Oct 22 2016;388(10055):2004-2014.
- **13.** Vecht CJ, Hovestadt A, Verbiest HB, van Vliet JJ, van Putten WL. Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. *Neurology*. Apr 1994;44(4):675-680.
- **14.** Wolfson AH, Snodgrass SM, Schwade JG, et al. The role of steroids in the management of metastatic carcinoma to the brain. A pilot prospective trial. *Am J Clin Oncol.* Jun 1994;17(3):234-238.

- **15.** Mulvenna PM. The management of brain metastases in patients with non-small cell lung cancer-is it time to go back to the drawing board? *Clin Oncol (R Coll Radiol).* Jun 2010;22(5):365-373.
- **16.** Roth P, Wick W, Weller M. Steroids in neurooncology: actions, indications, side-effects. *Curr Opin Neurol.* Dec 2010;23(6):597-602.
- 17. Nguyen TD, DeAngelis LM. Brain metastases. *Neurol Clin.* Nov 2007;25(4):1173-1192, x-xi.
- **18.** Soffietti R, Cornu P, Delattre JY, et al. EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. *Eur J Neurol*. Jul 2006;13(7):674-681.
- **19.** Sturdza A, Millar BA, Bana N, et al. The use and toxicity of steroids in the management of patients with brain metastases. *Support Care Cancer*. Sep 2008;16(9):1041-1048.